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Electroconvection in a layer of liquid subjected to unipolar injection is characterized
by two stability criteria, a linear and a nonlinear one, with an associated hysteresis
loop. Experimentally it is found that the velocity field fluctuates around its mean value.
A temporal analysis of the measured current, which is directly related to the velocity,
revealed the existence of a well-defined frequency correlated to the mean rotation time
of a fluid particle in the convective cell, thus indicating that these fluctuations are not
stochastic but related to the intrinsic dynamics of the system. Here a method of
superparticles is used to solve the problem of the non-stationary electroconvection of
the liquid. A good agreement between theoretical and experimental results is obtained.

1. Introduction

Flows driven by Coulomb forces are a common occurrence in many natural and
industrial situations. Determination of the flow field and charge density distribution
usually presents great difficulties, as the flow is influenced by the charge distribution
through the electrical force term in the Navier–Stokes equation, which in turn is
modified by the velocity field via the convection of charge. Fortunately, for those
situations in which the Reynolds number is small, the velocity field may be expanded
in a few modes. Typically one mode is enough to represent the flow with a few per cent
of error (Atten & Lacroix 1979). The charge distribution on the other hand is strongly
dependent on minute variations of the velocity field. For example, superimposing a
small periodic component onto a cellular mean velocity field gives rise to chaotic
mixing of the charge within the convective cell (Pe! rez & Castellanos 1991). In general,
the charge density presents inner boundaries with sharp charge gradients. The
complexity of the charge distribution makes impossible a modal analysis of the charge
conservation equation with a reasonable number of modes. Owing to numerical
diffusion, the usual finite elements or finite difference methods are not capable of
resolving the small spatial and temporal scales present in the charge density
distribution, even when specially designed antidiffusive schemes are used (Pe! rez &
Castellanos 1989). Superparticle-type methods have to be resorted to, which amounts
to substituting the partial differential equation for the charge density by thousands of
ordinary differential equations, one for each superparticle (Hockney & Eastwood
1981).

In this paper we apply the superparticle method to the analysis of the finite-
amplitude electroconvection of an insulating liquid layer subjected to unipolar
injection. This is a paradigmatic case of Coulomb-driven convection in the
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electrohydrodynamics (EHD) of isotropic liquids, equal in importance to the
electroconvection in nematic liquid crystals (Dennin et al. 1996) and to the
Rayleigh–Be!nard problem in thermal convection, and has been the subject of much
investigation during the last thirty years (for a review see Castellanos 1991 and Atten
1996). Controlling the charge injection by means of ion-exchange membranes allowed
careful investigation of the electroconvection induced by strong injection from one of
the electrodes. Experimentally, and theoretically, the existence of two stability criteria
was determined: a linear one for the onset of motion, and a nonlinear one with an
associated hysteresis loop in the current–voltage characteristics (Atten & Lacroix
1979). Experimentally, it was also found that finite-amplitude electroconvection is time
dependent, with fluctuations of the velocity field around its mean value of a chaotic
nature (Atten, Lacroix & Malraison 1980; Malraison & Atten 1982).

This time-dependent behaviour has until now defied any theoretical analyses,
although this problem has been partially analysed in the case of weak injection (Pe! rez
& Castellanos 1991). This analysis showed that even under smooth velocity fields the
charge density distribution may be extraordinarily complex. To close the problem we
need to be able to predict the velocity field and show that the steady finite-amplitude
solution is unstable with a bounded solution for the velocity field. The complexity of
the charge distribution precludes the possibility of finding analytical solutions, and
numerical computations of this problem must be undertaken. A first attempt to solve
this problem using a particle-type method was made by Castellanos & Atten (1987),
and Castellanos, Atten & Pe! rez (1987). The case of weak unipolar injection was
treated, and the existence of a long transient with chaotic fluctuations for the velocity
was demonstrated. The actual Coulomb repulsion was replaced in the computation by
the value corresponding to the hydrostatic solution, but as will be shown below, this
ended in all time variations finally dying out. A preliminary study using the method of
characteristics has already indicated that inclusion of the Coulomb repulsion could be
enough to sustain the fluctuations (A. T. Pe! rez 1996, personal communication).

In this work, the superparticle method has been refined, and Coulomb repulsion is
included by solving a Poisson equation at each time step. In this way we can show that
the velocity fluctuations are present. The problem of arbitrary injection strength has
been solved. In particular, the solution in the strong injection case makes it possible to
compare our numerical simulations with known experimental results.

In the weak injection regime, where experimental results concerning time fluctuations
are not yet available, the numerical results provide a range of relevant frequencies that
may be explored to detect such fluctuations experimentally. Finally, the generality and
flexibility of the method is shown through its application to a problem where the
constraint of an autonomous injection is replaced by a more realistic field-dependent
injection law in the weak injection regime (Felici & Gosse 1979; Pontiga, Castellanos
& Malraison 1995).

2. Basic equations

An incompressible, isothermal and insulating liquid is considered, with density ρ,
dynamic viscosity η and permittivity ε. It is confined between two parallel perfectly
conducting plates of infinite extent, a distance d apart and with a constant potential
difference φ

!
between them. Charge carriers of one sign are injected from one of the

electrodes (unipolar injection), and migrate through the liquid with a velocity KE, K
being the ionic mobility and E the electric field. Unless the contrary is explicitly stated,
it will be assumed that the injection is autonomous, i.e. that the charge density at the
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injector remains constant and independent of the electric field. It is also supposed that
the ions discharge instantaneously once they reach the opposite electrode.

The residual conductivity of the liquid is assumed to be very small (Atten & Lacroix
1979), typical values being less than 10−"" Ω−" m−". Therefore, the currents are small
enough to allow neglect of magnetic effects as well as Joule heating in the
electrohydrodynamic approximation (Melcher 1981). The electrical and mechanical
equations may be written in non-dimensional form taking d, φ

!
, εφ

!
}d # and Kφ

!
}d as

the units for distance, potential, charge density and velocity, respectively:

∆φ¯®q, (1)

¥q
¥t

­¡[j¯ 0, (2)

¡[�¯ 0, (3)

T

M #
0¥�¥t­(�[¡) �­¡ph 1¯∆�­TqE, (4)

where q denotes the charge density, φ the electric potential, � the velocity of the liquid
and ph the sum of the mechanical and electrostriction pressures. The dielectric force
term has been neglected in (4), as the permittivity is assumed to be constant throughout
the liquid since Joule heating is negligible. The constitutive equation for the current
density j is

j¯ q(E­�), (5)

where the first term accounts for the migration of the charge carriers due to the electric
field and the second term accounts for the convection of charge by the liquid motion.
The contribution of diffusion to the current can be ignored, since it is negligible
compared with the migration term (Pe! rez & Castellanos 1989).

A coordinate system is chosen to add the appropriate boundary conditions, so that
the (x, y)-plane coincides with the injecting electrode. Considering rigid electrodes
results in the no-slip condition for the velocity, �¯ 0 at z¯ 0, 1. The potential is fixed
at the electrodes, so that φ(0)¯ 1 and φ(1)¯ 0. Finally, the assumption of autonomous
injection provides an additional boundary condition at the injecting electrode, namely
q¯C at z¯ 0.

Three non-dimensional parameters appear in the equations:

T¯
εφ

!

ηK
, C¯

q
!
d #

εφ
!

, M¯
1

K 0
ε

ρ1
"/#

,

where q
!
is the charge density at the injector, T represents the ratio of the destabilizing

Coulomb force to the stabilizing viscous force, C is a measure of the injection strength,
and M is the ratio of the so-called hydrodynamic mobility of the ionic mobility. The
character of (ε}ρ)"/# as a hydrodynamic mobility can be easily understood by
considering a complete conversion of the electric energy supplied to the system into
kinetic energy of the liquid.

The equations admit a steady hydrostatic solution, with the charge density q(z)¯
(a}2)(z­b)−"/# decreasing from the injector while the electric field E(z)¯ a(z­b)"/#,
modified by the space charge, increases. The constants a and b depend on the injection
strength C. This steady solution is potentially unstable (Atten & Moreau 1972), like the
density distribution in the Rayleigh–Be!nard problem, with T playing the role of the
critical parameter. Above a critical value T

c
, which corresponds to the linear stability

criterion and depends on the injection strength C, the liquid is put into motion. The
analogy with the Rayleigh–Be!nard problem does not apply when the liquid is moving,
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owing to the different physical mechanisms involved in the transport of the relevant
scalar quantity at rest : heat is transferred by diffusion alone, whereas charge carriers
move relative to the liquid with velocity KE. On the basis of simple physical arguments,
it has been deduced that any stable motion of the liquid is characterized by a maximum
velocity higher than KE (Felici 1969; Atten & Lacroix 1979). The motion organizes
itself in the form of convective cells, the liquid flowing towards the injector in each cell
with a velocity greater than the ionic drift velocity. Therefore, regions free of charge
exist in each cell. This implies the existence of a nonlinear criterion T

f
corresponding

to finite-amplitude disturbances, smaller than T
c
. Both solutions �¯ 0 and �

max
"KE

should be stable in the interval between the two criteria, giving rise to a hysteresis loop.
This has been experimentally observed in the current–voltage curves in the space-
charge-limited-current (SCLC) regime (Atten & Lacroix 1979).

The fluid motion will be assumed to be two-dimensional, in the form of self-similar
rolls : �¯A�

!
, where max r�

!
r¯ 1 and A is the amplitude. The velocity field �

!
¯

(�
!
,w

!
) is obtained from the stream function

ψ
!
(x, z)¯

L

2π
(1®cos 2πz) sin

πx

L
, (6)

so that �
!
¯ ¥ψ

!
}¥z and w

!
¯®¥ψ

!
}¥x, the continuity equation being automatically

satisfied. L is the half-wavelength of a convective cell, which is assumed to be equal to
the value obtained from the linear stability analysis. Typical values that shall be used
are L¯ 0.687 in the weak injection regime (C¯ 0.1), and L¯ 0.614 for strong
injection (C¯ 10) (Atten & Moreau 1972). As long as T is close to the linear stability
criterion T

c
, this a priori velocity field is accurate to within a few percent.

The coupling existing between charge density and velocity field explicitly appears in
the Navier–Stokes as well as in the charge conservation equations. Making the scalar
product of (4) with �

!
and integrating over the cross-section of a convective cell leads

to the following equation for the amplitude A(t) :

T

M #
0 &

cell

�#
!
dxdz1dA

dt
¯ 0 &
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�
!
[∆�

!
dxdz1A­T&

cell

q�
!
[Edxdz. (7)

The pressure and the nonlinear terms have a vanishing contribution to this averaged
equation due to the symmetry conditions of the cell and the imposed velocity field �

!
.

Equation (7) may be regarded as a balance between inertial effects, electric power and
viscous dissipation. The constants appearing in the equation are readily evaluated as
functions of the cell size L :
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For a viscous-dominated regime, where inertial terms can be neglected, (7) reduces
to

A(t)¯®T&
cell

q�
!
[Edxdz5&

cell

�
!
[∆�

!
dxdz. (10)

The last term in (7) contains the couple between charge density and liquid velocity.
As will be discussed in more detail in §4, it is essential that sufficiently accurate charge
and field distributions are used to evaluate this term.

Once A(t) is determined, (1) and (2) have to be solved. The charge density is a
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complex function of the velocity and no analytical solution is known for a time-
dependent velocity amplitude. Any modal expansion of the charge is also excluded
because of the strong charge gradients present in the system. For the same reasons, any
numerical approach based on usual finite differences or finite elements is doomed to fail
(Pe! rez & Castellanos 1989). Therefore, a direct method to solve the charge conservation
equation has to be considered. The rest of this work is dedicated to the development
and application of a particle-type method designed to accomplish this aim.

3. The particle-type method

In the charge conservation equation the true discrete charge carriers are replaced by
a continuum fluid of charge, where the graininess of the charge is smoothed out. The
discretization of this equation leads to the concept of computational superparticles,
which can be thought of as clouds of ions (Hockney & Eastwood 1981). These
superparticles possess a conserved attribute, the electric charge, and other variable
attributes, position and velocity. Thus, conservation of charge is automatically
satisfied, while the variable attributes evolve according to the equations of motion
whose driving terms obey the field equations.

Simulation of the physical system proceeds as follows. A number of charged
superparticles are injected at one of the electrodes, simulating the true ions and
conserving the charge all along its motion. The equations of motion for the
superparticles are

dr
i

dt
¯A(t) �

!
­E, (11)

where r¯ (x, z), �
!

is the self-similar velocity field given by (6) and A(t) is the time-
dependent amplitude. E represents the total electric field, including the Coulomb
interaction between the ions. The equations of motion are integrated numerically using
a fourth-order Runge–Kutta method.

The electric field at each time is obtained from a Poisson equation for the potential.
In order to solve this equation it is necessary to revert from the discrete model
involving charged superparticles to a continuum charge density distribution. Field
quantities such as electric potential, electric field and charge density are represented by
their values at a regular array of mesh points. The first step consists in assigning the
charge of the superparticles to their nearby mesh points in order to have a mesh-
defined charge density. Then, solving the Poisson equation numerically gives the values
of the potential at the mesh points, from which the values of the electric field are readily
obtained. Finally, the electric field at the superparticle positions is calculated by
interpolating the mesh-defined field values. Since both particle and mesh features are
present, the method can be classified within the category of particle-mesh methods
(Hockney & Eastwood 1981).

The charge assignment procedure can be described as follows. The charge of a
superparticle must be distributed among the nearby mesh points according to a well-
defined prescription, so that the charge density q

p
at a mesh point r

p
is given by

q
p
¯

1

V
p

3
Np

i="

W(r
i
®r

p
)Q

i
, (12)

where the sum extends over the total number N
p

of particles, V
p

is the volume of the
corresponding mesh cell, Q

i
the charge of superparticle i located at r

i
and W(r

i
®r

p
)

represents the fraction of the charge Q
i

assigned to r
p
, which is a function of the

position of the superparticle relative to the mesh point. A very accurate assignment
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scheme is that known as the cloud in cell (CIC), which involves the four nearest
neighbours to a superparticle, and the corresponding function W(r

i
®r

p
) is (Hockney

& Eastwood 1981)

W(r)¯ ((1®rxr}h
x
) (1®rzr}h

z
)

0

if (x, z) ` [®h
x
, h

x
]¬[®h

z
, h

z
]

otherwise,
(13)

where h
x

and h
z

are the horizontal and vertical distances between the four adjacent
mesh points that define the square containing the superparticle. The CIC scheme
allows a simple intuitive geometrical interpretation, as shown in figure 1(a).

Once the charge density is available, the Poisson equation is solved numerically
using a finite-differences scheme. The appropriate boundary conditions for the
potential correspond to the fixed values at the electrodes, together with the assumption
that L corresponds to half a wavelength. This implies that the x-component of the
electric field vanishes at the vertical boundaries of the cell, i.e. ¥φ}¥x¯ 0 at x¯ 0 and
x¯L. The resulting linear system is solved by a direct block elimination method
(Isaacson & Keller 1966). The electric field is finally obtained from the potential by
central differences.

The final step in the particle-mesh calculation is interpolation of the mesh-defined
electric field values to find the field acting on the superparticles. Arguments based on
physical grounds are in favour of the same force interpolation and charge assignment
schemes (Hockney & Eastwood 1981). The electric field at a superparticle position r

i
,

is then evaluated as

E(r
i
)¯ 3

Ng

p="

W(r
i
®r

p
)E(r

p
), (14)

where the sum extends over all the N
g

mesh points and E(r
p
) are the mesh-defined

values of the field. The function W is that corresponding to the CIC scheme, (13).
Summarizing, the main steps in the particle-mesh calculation are the following:
(i) assign charge to the mesh from a given configuration of the superparticles in the

system;
(ii) solve the Poisson equation for the potential, and calculate the electric field;
(iii) interpolate the electric field at the superparticle positions;
(iv) move the superparticles with the current value of the electric field and liquid

velocity field, to get a new configuration of the system;
(v) calculate a new value of the amplitude A(t) consistent with the new configuration

of the system, according to (7) or (10).
Thus, given a sequence of time levels t

n
¯ n∆t, n¯ 0, 1,…, the corresponding values

of the velocity amplitude are obtained as

A
n+"

¯A
n
­

M #

Tc
"

0c#A
n
­T&

cell

qn+"�
!
[En+"dxdz1∆t (15)

if (7) is used, or

A
n+"

¯®
1

c
#

T&
cell

qn+"�
!
[En+"dxdz (16)

in the case of a viscous-dominated regime (M¯¢), equation (10). The charge density
and electric field previously computed in steps (i) and (ii) at time t

n+"
are used to

evaluate the integral in (15) or (16), using the trapezoidal rule (Press et al. 1986).
Although it is clear from physical reasons that the current circulating through the

cell should be closely related to the liquid velocity, it is worth calculating the current
as well as the amplitude of the velocity field. The experimentally measured electrical
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(c)

F 1. (a) The CIC assignment scheme. The fraction of charge assigned to the four neighbouring
mesh points from a particle (located at the position represented by the dot) is proportional to the area
of overlap of the particle cloud (hatched square) with the cells containing those mesh points. (b) Mesh
points (crosses) and an initial tesselation of the computational cell with superparticles. The boxes
contiguous to the injector are the injection boxes. (c) Schematic representation of the injection
mechanism.

current (in non-dimensional units and per unit length in the y-direction) corresponds
to

&
z=constant

9q(Aw
!
­E

z
)­

¥E
z

¥t :dx, (17)

which is readily shown to be independent of z from Ampe' re’s law and the boundary
conditions in the cell. It is important to include the displacement current, even though
its magnitude is usually quite small compared to the current due to the flow of charge
(at most 1}30 of the flow current in the results presented in the next Section), because
its time dependence significantly contributes to the actual time fluctuations of the
current. The integral in (17) is numerically computed at time t

n
on every horizontal

plane of the mesh and the average over all the planes is taken as the value of the
current, smoothing out as much as possible the computational errors inherent in the
mesh.

A crucial question in the construction of the computational model is concerned with
the role of the boundary conditions. Some of them have already been taken into
account: those referring to the fluid are explicitly included in the self-similar velocity
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field considered, and those affecting the electric potential are employed in the
numerical solution of the Poisson equation. Only the autonomous injection hypothesis
remains to be analysed. The injection mechanism used in the simulation is described in
the following.

Let us consider an initial configuration of the system, consisting of a tesselation of
the whole computational cell with a number of superparticles, say n

"
¬n

#
superparticles

in each mesh cell, that without any loss in generality are supposed to be rectangular as
shown in figure 1(b). The state corresponding to the steady hydrostatic solution is
obtained by giving the appropriate charge to each superparticle. The grid elements
adjacent to the injecting electrode will be considered injection boxes, where the
boundary condition on the charge density is to be satisfied. A new superparticle is
introduced into each injection box at each step, to compensate for the charge loss as
the particles occupying the injection boxes in the previous step move away from the
injector, driven by the electric field (figure 1c). In this way the number of particles
adjacent to the injector is kept constant. Since the fraction of charge leaving each
injection box when the particles are moved is proportional to the time step ∆t, the
charge of the injected particles is also proportional to ∆t. Therefore, any variation of
the electric field at the injector will result in different values for the charge of the
injected particles. This simple injection mechanism has proved to be very efficient in
complying with the autonomous injection hypothesis. Moreover, it can be implemented
without any additional difficulty whatever the injection law, as will be shown in the
next Section. As regards the ejection mechanism, the ions discharge instantaneously
when they reach the collector. In the computational model this simply means that
superparticles are removed from the system when this occurs.

The number of superparticles in the system is essentially dependent on the timestep
∆t and the number of injection boxes. This is easily understood since all the
superparticles injected at a given place will take the same time on average to reach the
collector. Hence, the number of superparticles present at a given time and coming from
a given injection box will be on average equal to the number of timesteps corresponding
to the crossing time. Thus, the timestep as well as the number of injection boxes have
to be carefully established. The timestep should be small enough so that a superparticle
next to the injector moves a distance less than the size of the injection box, and the
number of injection boxes should be sufficient to avoid the spurious fluctuations of
mesh-defined quantities, but always keeping the total number of superparticles within
reasonable computational capabilities.

4. Results and discussion

4.1. The steady hydrostatic solution

The validity and accuracy of the particle method described in the previous Section is
first checked by application to the steady hydrostatic state, where comparison with the
analytical solution is possible. In this case the velocity of the liquid is taken to be zero,
and all steps of the particle-mesh method are performed, except the last one that
calculates the amplitude of the velocity field.

Two different regimes have been considered: the weak injection regime, with a
typical value of C¯ 0.1, and the strong injection regime (SCLC), with values of around
C¯ 10. There is no substantial difference in the application of the method in the two
regimes, except for one technical, but crucial, point. In the weak injection regime the
steady hydrostatic charge density and electric field distributions show a very slow
variation with the z-coordinate (Atten & Moreau 1972). Thus, a regular mesh will be
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F 2. Charge density (crosses) and electric field (circles) in the steady hydrostatic state for
strong injection (C¯ 10). The timestep is ∆t¯ 1}300.

a correct choice for the particle-mesh calculation. On the other hand, in the SCLC
regime both charge density and electric field show drastic variations near the injector
(Schneider & Watson 1970; Atten & Moreau 1972). In the limit, the electric field is zero
and its derivative, the charge density, tends to infinity at z¯ 0. Such strong gradients
in the z-coordinate in a region so close to the injector are not consistent with using a
regular mesh in the particle-mesh calculations.

In the weak injection case the mesh consists of N
"
¬N

#
equal cells, with size h

x
¯

L}N
"

and h
z
¯ 1}N

#
in the x- and z-directions, respectively. The mesh points are

located at the centre of the cells (figure 1b). It is assumed that n
"
¬n

"
superparticles

initially fill each mesh cell, and hence the number of injecting boxes is N
"
¬n

"
. For

C¯ 0.1, taking N
"
¯ 30, N

#
¯ 30, n

"
¯ 4, n

#
¯ 3 and ∆t¯ 1}200, the deviations of

numerical from analytical results for the hydrostatic solution do not exceed 1%. The
small discrepancy is basically attributable to the charge assignment procedure used, so
representing to a certain extent a measure of the accuracy of the method. Some small
static fluctuations can be observed in the computed charge density when the timestep
is ∆t¯ 1}200. This is entirely due to the discrete character of the time levels, and the
fluctuations disappear when a smaller ∆t is used. The fluctuations are much smaller in
the electric field, which is consistent with the field being an integral of the charge
density. It has also been checked that by doubling the number of mesh points the
deviations from the analytical results decrease by approximately a factor two, and the
first-order approximation of the overall method is confirmed. As the transit time of an
ion from one electrode to the other is of the order of unity, the number of
superparticles involved in the calculation of the steady state is approximately the
number of injection sites divided by the timestep, which gives around 24000
superparticles when ∆t¯ 1}200. This number is large enough to prevent the
appearance of spurious fluctuations in the mesh-defined quantities. Some technical
details concerning the particle-mesh calculations can be found in the Appendix.

In the strong injection regime a non-uniform mesh must be employed, as mentioned
above. The method followed to construct this mesh is explained in the Appendix. The
charge density and electric field distributions corresponding to the hydrostatic solution
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are shown in figure 2, for an injection strength C¯ 10. The results have been obtained
using a mesh with N

"
¯ 30, N

#
¯ 40, n

"
¯ 4 and n

#
¯ 3, and a timestep ∆t¯ 1}300. The

transit time of the ions may be evaluated easily from the analytical expression for the
electric field, and it turns out to be larger than in the weak injection regime. This results
in a considerable increase in the number of superparticles present in the system, which,
in the case considered, is about 45700.

4.2. The linear stability criterion

Whereas the velocity field of the liquid was ‘turned off’ in the problem considered in
the previous subsection, the self-similar velocity field corresponding to (6) is now
‘turned on’, and the ions are driven by the sum of the electric and velocity fields.
Starting from the steady hydrostatic solution reached previously, the system is
subjected to a small perturbation. The amplitude A(t) of the velocity field is then
calculated at time levels t

n
¯ n∆t, using either (15) or (16). This is done for a fixed value

of C and varying the parameter T. For sufficiently low values of T, the amplitude A(t)
dies out, and the steady (purely conductive) hydrostatic state is reached. When T is
above a critical value T

c
, the velocity amplitude starts to grow, very slowly at first and

then much more quickly, as the charge distribution begins to differ appreciably from
that of the hydrostatic solution. Once the amplitude A(t) reaches a value greater than
the electric field some regions of the computational cell become inaccessible for the ions
coming from the injector. The amplitude shows very large fluctuations, until it finally
stabilizes with small fluctuations around a finite average value. Two typical cases are
shown in figure 3.

The critical value T
c
gives the linear stability criterion. In a typical case within the

weak injection regime, with C¯ 0.1, the result obtained is T
c
¯ 23450. This value has

been computed for several values of the parameter M(M¯¢, 200, 100, 50 and 20) and
is found to be independent of M as expected. In the strong injection regime, C¯ 10,
for instance, T

c
¯ 171, again independent of the value of M (M¯¢, 40, 20, 10 and 5

were used in the calculation). These results show very good agreement with those
theoretically predicted by the linear stability analysis (Atten & Moreau 1972), and
represent an improvement over previous numerical results obtained in the weak
injection regime by two different methods: a finite difference method and a particle-
type method (Castellanos & Atten 1987).

4.3. Time-dependent finite-amplitude electrocon�ection

4.3.1. Weak injection regime

The motion of the liquid organizes itself above the stability threshold with a finite
average velocity amplitude greater than the migration velocity of the ions, as was
already predicted by the simple hydraulic model of weak unipolar injection developed
by Felici (Felici 1969; Atten & Lacroix 1979). An important consequence is that a
certain region of the cell cannot be reached by the ions, and hence is void of charge.
The charge distribution in the cell is readily obtained for a given value of the velocity
amplitude if Coulomb repulsion between the ions is neglected, since in this case the
charge density remains constant along the ion trajectories (Pe! rez & Castellanos 1991).
For A" 1 the convective cell is divided into two unconnected regions: one containing
the trajectories of the injected ions joining the injector and the collector with a constant
charge density C, the other corresponding to closed orbits and therefore strictly free of
charge. Both regions are separated by a curve referred to as the separatrix. The empty
region represents a major part of the cell when T"T

c
due to the very large value of

the velocity, as can be seen in the plots of the charge density (figure 4), in which it can
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F 3. Time evolution of the velocity amplitude. (a) Weak injection (C¯ 0.1, T¯ 24000).

(b) Strong injection (C¯ 10, T¯ 178).

also be observed that a small amount of charge is found inside the almost empty region
in the cell. The almost charge-free region becomes smaller for subcritical values of T,
since the velocity amplitude is lower, and also the amount of residual charge found in
that region is smaller.

The critical value T
f
of the nonlinear criterion and the corresponding hysteresis loop

for the velocity are shown in figure 5. The result obtained for the nonlinear criterion,
T
f
}T

c
C¯ 0.87, and the asymptotic behaviour agree well with the predictions of the

approximate analytical solution, T
f
¯ 0.93T

c
C and ACT "/# for large T (Castellanos &

Atten 1987).
It has been found that both the velocity and the charge density fluctuate in time, the

velocity fluctuations sustaining the charge fluctuations via (2) and the latter sustaining
the former via (4). This is at variance with previous computations, for which the
fluctuations in the velocity amplitude finally disappeared and part of the cell ended up
strictly free of charge (Castellanos & Atten 1987; Castellanos et al. 1987). The new
physical feature which is taken into account is an accurate calculation of the actual
Coulomb repulsion, instead of considering a mean field corresponding to, or similar to
that of, the hydrostatic state. Two facts of physical interest, essentially linked to each
other, stem from this approach: the time fluctuations of velocity and current, and the
existence of a small amount of charge inside the hole in the cell. It has also been verified
that less marked changes in the field, such as a homothetic transformation with a
dilatation factor not far from unity applied to the solution of the Poisson equation, can
completely destroy the time behaviour shown in figure 3.
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It was already noticed in a previous work (Pe! rez & Castellanos 1989) that if the
Coulomb repulsion was included a region connecting the hole with the collector
appeared, thus providing an escape route for the charges. This channel has been
detected numerically, and was found to be very narrow with a width that fluctuates
with time. The maximum width has been found to be of the order of 1}90 of the
horizontal size of the convective cell, which shows that the dynamics is governed by the
behaviour of the ion trajectories near the unperturbed separatrix, in agreement with the
theoretical results obtained for a time-dependent amplitude A¯A

!
­ε sin (Ωt) in the

weak injection regime (Pe! rez & Castellanos 1991). This theoretical analysis
demonstrated the existence of a chaotic layer around the separatrix, causing a mixing
of charge that substantially modifies the charge density distribution.

While the average value of the velocity is independent of M for a given value of T,
as is to be expected from (7), the amplitude of the velocity fluctuations is not, as shown
in figure 6. With C¯ 0.1 and T¯ 23800, slightly above the instability threshold, it
varies from about 2% of the average value of the velocity for M¯¢ to 0.5 per
thousand for M¯ 20 (the results are practically identical for M¯¢ and M¯ 200).
For T¯ 10000, well below the linear criterion, the fluctuations range from about 6 per
thousand for M¯¢ to 0.6 per thousand for M¯ 20. The increase of fluctuations with
M may be understood on a physical basis, since large values of M correspond to lower
mobilities, which means that the ions are more strongly dragged by the liquid and can
therefore be more easily trapped in the separatrix. The same conclusion can be reached
in a somewhat more formal way through a simple analysis of the evolution equation
for the fluctuations, that can be readily obtained from (7). In a first approximation,
replacing the fluctuating time-dependent forcing term that appears in this equation by
an oscillatory forcing term leads to an oscillatory solution for the fluctuations, with an
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amplitude that increases with M. Although no quantitative prediction about the
amplitude of the fluctuations could be expected from this rough approximation, it
yields the right qualitative behaviour of the fluctuations with M.

The time behaviour of the current, computed according to (17), very closely
resembles that of the velocity amplitude, as expected on physical grounds. Despite the
lack of experimental data concerning the current fluctuations in the weak injection
regime, it would seem interesting to analyse their magnitude and spectral char-
acteristics. The amplitude of the current fluctuations varies from about 2% of the
average value of the current for M¯¢ to 1% for M¯ 20 when T¯ 23800, and from
6 per thousand for M¯¢ to 3 per thousand for M¯ 20 when T¯ 10000.

Some of the experimental features of the power spectra found in the SCLC regime
are also encountered numerically in the weak injection case. The power spectra for the
velocity, shown in figure 7, and the current are entirely similar. A broadened peak
appears around a frequency f

"
, basically independent of M, followed by an exponential

decay with a characteristic frequency f
c
. The peak frequency f

"
is directly related to the

average value of the liquid velocity (Malraison & Atten 1982). In fact, f
"
corresponds

very closely with the mean rotation time of a fluid particle in the convective cell. The
behaviour of f

"
and the ratio f

c
}f

"
with the voltage are shown in figure 8, and they

exhibit very similar features to those found in the SCLC regime. Typical values of f
"

are expected to be between 70 and 400 Hz under experimental conditions similar to
those discussed in Pontiga et al. (1985). It would be of interest to measure these high-
frequency fluctuations. The apparatus employed to measure the current should
respond to these frequencies, and any standard data acquisition system would then
make it possible to verify the existence of the fluctuations.



Modelling of Coulomb-dri�en con�ection in insulating liquids 57

M = ∞

10–10

10–5

100

P

M = ∞

0

0.1

0.2

P

M = 50

10–10

10–5

100

P

M = 50

0

0.005

0.010

P

M = 20

10–10

10–5

100

P

M = 20

0

1.0

1.5

P
0.5

5 10 15
f

0 20 40 60
f

(× 10–4)

F 7. Linear and logarithmic plots of the power spectral density of the velocity fluctuations as
a function of frequency, in the weak injection regime (C¯ 0.1, T¯ 23800), for different values
of M.

T

0.8

0.6

0.4

2 3 4 5 6 7
(× 104)

fc
f1

2 3 4 5 6 7

T

5

6

7

8

9

f1

(× 104)

F 8. Peak frequency f
"

as a function of T for weak injection (C¯ 0.1, M¯¢). Inset : the
ratio f

c
}f

"
versus T. f

c
is the characteristic decay frequency.

4.3.2. Strong injection (SCLC ) regime

The charge distribution in the convective cell is shown in figure 9 for a value of T
slightly above the stability threshold. It is apparent from the figure that the size of the
hole is now less than in the case of weak injection, according to the much lower values
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of the liquid velocity above the linear stability criterion in the SCLC regime. The
nonlinear criterion T

f
and the hysteresis loop obtained for the average velocity are

shown in figure 10. The results are in good agreement with those obtained in a previous
work using a Galerkin method (Atten & Lacroix 1979).

The previous discussion on the close relation between the time fluctuations of
velocity and current and the existence of a small amount of charge in the hole applies
without changes to the results obtained in the SCLC regime. The relative amount of
charge in the hole is now smaller than in the case of weak injection. This may be
understood on the basis of the relation (1®β)}β#¯C

b
}δ, where C

b
is the average value

of the charge density near the border of the hole, βC the average charge density inside
the hole, and δ a typical distance associated with the charge gradient (Pe! rez &
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Castellanos 1989). Typically δE 10−#, C
b
EC}5 for C¯ 10 (see figure 9) and C

b
EC

for weak injection (see figure 4). This rough estimation gives βE 0.3 for C¯ 0.1, and
βE 0.07 for C¯ 10, which are of the order of the results obtained in the simulation.
Consequently, the amplitude of velocity and current fluctuations relative to their
average value is also notably smaller than it was for weak injection, as may be seen
from figure 11. For C¯ 10 and T¯ 178, slightly above the instability threshold, the
velocity and current fluctuations range from about 3 per thousand for M¯¢ to 2 per
thousand for M¯ 5, and from 2 per thousand for M¯¢ to 1 per thousand for
M¯ 5, respectively (M¯ 20 is practically infinity in this case). Below the linear
criterion, for C¯ 10 and T¯ 140, the fluctuations exhibit less sensitivity to the value
of M, being of the order of 2 per thousand for the velocity and 0.8 per thousand for
the current. These results are well within the range of the experimental results
(Malraison 1984). The existence of a narrow channel connecting the hole with the
collector has also been confirmed by the computational results in the SCLC regime.

Some characteristic power spectra of velocity and current are shown in figure 12.
They all present an enlarged peak at a characteristic frequency f

"
, independent of M,

that increases with the voltage, as can be seen in figure 13, where the non-dimensional
frequency is plotted versus T. These results are in fairly good agreement with the
experimentally observed relation f

"
£φ#

!
}d # (Atten et al. 1980; Malraison & Atten

1982), since T is proportional to the voltage. A region of exponential decay with
frequency can be clearly observed in the power spectra of the velocity, though it is
much less apparent in the current spectra except at higher voltages. The ratio between
the characteristic frequency f

c
of the exponential part of the spectra and f

"
is also

plotted in figure 13. It is always near 0.42, a value lower than the 0.7 of the
experimental results discussed in Malraison & Atten (1982).
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4.4. Computer simulation of experiments

The particle method described in this paper was used to simulate some real
experimental situations. The experimentally well-known strong injection regime will be
considered first.

4.4.1. Strong injection regime

Always assuming an autonomous injection, a voltage φ
!

below the stability
threshold is initially established, and then gradually increased while the separation
between the electrodes is kept constant, the system being allowed to reach the steady
hydrostatic state at each step. Two experimental conditions have been considered with
different injection strengths. In the first one the initial voltage φ

!
is chosen to

correspond to T¯ 100 and C¯ 10. In the second, with the lower injection strength, the
initial voltage corresponds to the same value T¯ 100 but with a lower value of
C¯ 7. The two parameters T and C vary when the voltage φ is changed, according to the
hypothesis that q

!
remains constant. The computed electrical current density accurately

follows the theoretical law J¯ (9}8) εKφ#}d $ for motionless liquids in the SCLC
regime (Schneider & Watson 1970), as shown in figure 14.

The current experiences a sudden discontinuity when the linear stability criterion
T¯T

c
is reached. The critical values obtained are T

c
¯ 173 (C¯ 5.8 at the critical

voltage) in the first case and T
c
¯ 193 (C¯ 3.6 at the critical voltage) in the second,

which compare very favourably with the theoretical predictions of the linear stability
analysis (Atten & Moreau 1972). It is also found that the higher the injection strength,
the larger the jump in the current, amount to about 40% of the value of the current
below the threshold in the first case, and 35% in the second. The steeper slope in the
plot of the current versus the square of the voltage above the instability threshold
found in the experimental results (Atten & Lacroix 1979), has been also obtained
numerically.

The hysteresis loop is obtained by decreasing the voltage from above the threshold.
The motion of the liquid is sustained until a new critical value of the voltage, lower
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than the former value, is reached, which corresponds to the nonlinear criterion T
f
. The

values obtained are T
f
¯ 125 (C¯ 8 at that voltage) in the first case and T

f
¯ 130

(C¯ 5.4 at that voltage) in the second, in reasonable agreement with the numerical
results obtained with a Galerkin method (Atten & Lacroix 1979). A new jump in the
current, smaller than the previous one, takes place, and the steady hydrostatic state is
recovered again. The relative magnitude of this jump is around 17 and 15% in the two
cases, respectively. Typical experimental values for the jumps in the current (Atten &
Lacroix 1979) are much smaller than those obtained in this work with the particle
method. However, it should be noted that the critical voltages obtained numerically,
especially for the linear criterion, are overestimated with respect to the experimental
values not only when obtained by the method developed in this work but also in
previous attempts (Atten & Lacroix 1979). If the appropriate correction factors for the
critical values of T are considered, the jumps in the current become equal in size to the
experimental results.

It is worth noticing that the electric field near the injecting electrode noticeably
increases when the liquid is put into motion. This fact must be taken into account when
choosing a suitable timestep and mesh size near the injector.

4.2.2. Weak injection regime

As suggested in Pontiga et al. (1995), the detection of the linear instability threshold
in the weak injection regime should be carried out at a fixed voltage and varying the
electrode separation, exactly the opposite of what is done in the case of SCLC.
Therefore, the computational experiment will be carried out as follows. Starting from
an electrode separation corresponding to a state below the linear stability threshold,
the distance d is gradually increased while the voltage φ is kept constant, the system
being allowed to reach the purely conductive state at each step. Moreover, the injection
is considered to be non-autonomous, following a field-dependent law as given by Felici
& Gosse (1979) (see also Pontiga et al. 1995) :

q
!
¯

q*

2bK
"
(2b)

, (18)

where q
!
is the charge density in C m−$ at the injector, q* a constant linearly dependent

on the residual conductivity σ of the liquid, and K
"
is the modified Bessel function of
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the second kind and first order. The parameter b is the ratio of two physical distances,
b¯L

B
}L

E
, the Bjerrum distance L

B
¯ e#}4πεkθ, where k is the Boltzmann constant

and θ the absolute temperature, and the distance L
E

¯ (e}4πE(0))"/# associated with
the electric field at the injector.

The computer experiment was performed for a solution of TIAP in cyclohexane
(ε

r
E2.02, ηF0.96¬10−$ kg m−" s−"), with residual conductivity σ¯1¬10−"" Ω−" m−"

and mobility KE 1.3¬10−) m# V−" s−", at 20 °C (Pontiga et al. 1995). The voltage is
fixed at 10% V, which gives T¯ 14331. When the electrode separation d, which is
initially set at 1 mm and corresponds to an injection strength C¯ 0.059, is increased,
a critical value is reached at which the liquid is put into motion. This happens for
d¯ 2.55 mm, as shown in figure 15, when the non-dimensional charge density at the
injector is C¯ 0.135. Despite the large value of the average velocity amplitude reached
by the liquid, A¯ 9.1, the jump in the current is relatively small, about 9.6% of the
value of the current below the threshold. This small jump might explain the difficulties
in detecting some evidence of the liquid motion from current measurements, and why
the motion should be searched for by some direct procedure.

When the electrodes are brought nearer to below the critical threshold, there is no
value of the distance d at which the steady hydrostatic state is recovered. The reason
for this is that the parameter C never reaches a value low enough to lie below the
nonlinear criterion for the given value of T. The dependence of C on d # is overcome
by the high value of the electric field, and therefore of q

!
, when the electrodes get closer.

The hysteresis loop can be closed by choosing a lower value of T, i.e. of the voltage,
in the experiment.
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5. Conclusions

The development of a superparticle-type method to cope with the hyperbolic charge
conservation equation makes it possible to overcome any inherent difficulties caused by
the existence of sharp charge gradients, which are present in usual finite element and
finite difference methods when applied to typical electrohydrodynamic problems. The
method was applied successfully to the problem of finite-amplitude electroconvection
in an insulating liquid layer. It was found that an accurate evaluation of Coulomb
repulsion is essential to obtain time-dependent finite-amplitude electroconvection. The
use of any simpler estimation, such as the analytical solution for the steady hydrostatic
state, results in the extinction of any time variation in the computed liquid velocity and
electrical current. A close link between the time fluctuations of velocity and current and
the existence of a small amount of charge in some otherwise almost charge-free regions
of the liquid was demonstrated.

All the well-known experimental features of electroconvection in the SCLC regime
were satisfactorily reproduced, such as the linear and nonlinear criteria and the
hysteresis loop in current–voltage characteristics, the size and spectral properties of
current fluctuations, and the dependence of the characteristic frequency of the
fluctuations on voltage.

Finite-amplitude electroconvection in the weak injection regime, where no conclusive
experimental results are at present available, also shows some of the distinctive features
present in the SCLC regime, although the range of frequencies to be explored is much
higher than for SCLC (but still well within experimental possibilities). No difficulty was
found in the application of the superparticle method when a realistic field-dependent
injection law was considered instead of the simpler, but commonly assumed,
autonomous injection.

The authors are indebted to Dr Alberto Pe! rez for many fruitful discussions. This
work has been supported by the Spanish Direccio! n General de Investigacio! n Cientifica
y Te! cnica (DGICYT), under contracts PB93-1182, PB91-0570 and PB94-1139.

Appendix

Two points of practical importance must be considered in order to reduce the
computation time to a minimum, given the large number of superparticles present in
the system. One involves the localization algorithm of the four nearest neighbours to
a superparticle, necessary for charge assignment and electric field interpolation. The
other involves exceptional, though very many in practice, cases when a superparticle
is not surrounded by four mesh points because it is close to the border of the
computational cell. Setting special algorithms for these particular cases would result in
a severe computational cost. The problem was solved by considering an, in some sense
‘fictitous ’, extended mesh, which is constructed by adding to the real mesh two rows
and two columns of new points outside the computational cell, symmetrically placed
with respect to the borders with the corresponding inner mesh points. Using this
extended mesh, any superparticle in the system is always surrounded by four extended-
mesh points, and so the localization algorithm becomes general and straightforward.
A superparticle located at (x, z) will belong to a rectangle [x

i
,x

i+"
]¬[z

j
, z

j+"
] whose

vertices are extended-mesh points, with i¯ [(x­h
x
}2)}h

x
] and j¯ [(z­h

z
}2)}h

z
], where

[x] means the integer part of x. Once the charge has been assigned to all the extended-
mesh points, the charge attached to the outer points is merely transferred to its
symmetric counterparts inside the computational cell.
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Regarding the electric field interpolation at a superparticle position, the procedure
is strictly analogous. To comply with the boundary conditions, E

x
must change sign

while E
z
remains invariant when crossing the cell boundaries. The use of the extended

mesh provides results in very good agreement with the analytical solution, at the same
time keeping the computational cost within reasonable limits.

When the injection is strong a non-uniform computational mesh must be employed,
as explained in the text. Since the gradients of charge density and electric field in the
hydrostatic solution occur only along the z-coordinate, mesh uniformity will be
retained in the horizontal direction. Therefore, the mesh will consist of N

"
¬N

#
cells,

of equal horizontal size h
x
¯L}N

"
and variable height, being denser in the region near

the injector and less so away from it. The most appropriate way of designing the
variable mesh would be to keep the truncation error in the discretized Poisson equation
of the same relative magnitude all across the cell. The size ∆z of the mesh cells should
then vary between the electrodes so that ∆q}q¯∆z}(z­b)¯ constant, as can easily
be deduced from the analytical hydrostatic solution, with the value of the constant
depending on the number N

#
of cells.

Even though construction of such a mesh is a very straightforward task, there is a
serious disadvantage as regards the localization algorithm, due to the lack of any
simple geometrical regularity. Hence, a different approach has been followed, with the
height h

z
( j ) of the j-row of mesh cells being taken to increase according to a

geometrical growth factor α, h
z
( j )¯ hαj, j¯ 0,… ,N

#
®1, where h is the height of the

cell next to the injector. Assuming that the truncation error in the discretized Poisson
equation has the same relative magnitude at z¯ 0 and z¯ 1 immediately leads to the
relationship ∆}h¯ (1­b)}b, where ∆¯ hαN#−" is the size of the cell next to the
collector. Therefore, the number of vertical cells N

#
fixes the value of α. This, together

with the condition that the distance between the electrodes is unity gives h¯
(1®α)}(1®α∆}h).

The great advantage of using this mesh is that it makes it possible to obtain a simple
and efficient algorithm to localize the four nearest neighbours to a superparticle located
anywhere in the computational cell. Considering an extended mesh built in exactly the
same way as in the weak injection case, a superparticle placed at (x, z) lies inside a
rectangle [x

i
,x

i+"
]¬[z

j
, z

j+"
] whose vertices are extended-mesh points, with

i¯ [(x­h
x
}2)}h

x
], j¯ ceil 9 1

lnα
ln ( 2

α­1 01­
α®1

h
z1*: , (A 1)

where ceil [x] refers to the minimum integer not less than x.
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